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Abstract  

When nonlinear amplifiers are pushed to the point of saturation in satellites, the resulting distortion of the sent signal makes it difficult 

to receive. However, the M-ray quadrature amplitude modulation (M-QAM) constellation's symmetries are maintained by the 

nonlinearities induced by memoryless bandpass amplifiers. In this work, we offer a cluster-based sequence equalizer (CBSE) that makes 

use of these regularities. When compared to more traditional methods like linear transversal equalizers, Volterra equalizers, and RBF 

network equalizers, the suggested equalizer shows substantial improvement. This performance boost is achieved at a far reduced 

computational cost as well. 

INTRODUCTION  

A satellite's job is to operate as a basic repeater, 

picking up a signal from an earth station or another 

satellite (uplink) and sending it on to another earth 

station or another satellite (downlink) [1]. In order 

to get the most out of the satellite communication 

system's on-board resources, it's common to push a 

high power amplifier (HPA) like the travel ing 

wave tube amplifier (TWTA) to the brink of 

saturation, which distorts the signal and makes the 

link nonlinear as a whole. Constant modulus 

constellation symbols (e.g., 4- QAM) are often 

utilized to combat nonlinear distortions [2]. 

However, anytime great band width efficiency is 

desired [3], massive QAM sig nal constellations 

must be utilized, which leads to severe nonlinear 

distortions. For such scenarios, (a) equalization [4, 

5] and (b) predistortion or power amplifier 

linearization [6-8] have been offered as potential 

solutions to the issue of accurate reception of the 

broadcast signal. Through equalization, nonlinear 

(amplifier) and linear (mul tipath) aberrations in the 

connection are post-cancelled by processing the 

signal at the receiver to retrieve the sent data. 

Nonlinear equalizers attempt to balance out the 

nonlinear effects of the HPA in addition to 

combating the intersymbol interference (ISI) 

caused by the propagation channel. The 

equalization method has the fundamental problem 

of increasing the financial and computational 

burden on each terminal. Data is predistorted 

before the amplifier stage in an effort to replicate 

the inverse of the amplifier's characteristic and 

cancel out the nonlinear effects. As a result, the 

entire pattern becomes linear. The benefit of this 

method over utilizing an equalization in each 

terminal is that just a single system is required to 

cancel the HPA non linearity at the satellite. 

However, the fundamental problem is that it cannot 

be used with currently orbiting satellites since the 

predistorter must be on-board. In addition, a 

terminal equalizer is still required if multipath is 

present. Only the first method, equalization on the 

receiving end, will be  discussed in this work. 

Nonlinear equalizers using NN structures [5, 9] or 

Volterra series [10, 12] are often used in related 

works. Multilayer perceptron’s (MLP) [13, 14], 

radial basis functions (RBF) [15, 16], and self-

organizing maps (SOM) [17-19] are only few 

examples of NN-based equalizers. In [20], the 

efficacy of MLP, RBF, and SOM equalizers is 

compared. However, NN and Volterra approaches 

have the drawback of always needing a large 

(sometimes unrealistic) number of training samples 

to result in a satisfying solution [5, 11], in addition 

to their significant computational and 

implementation complexity. 
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EXPLANATION OF THE CHANNEL MODEL AND COMMUNICATIONS SYSTEM  

shows how a common satellite communication 

system [1] works. Historically, communication 

satellites have used simple transponder relay 

configurations like the bent-pipe4. Newer satellites 

include regenerative payloads [2, 28] with on-board 

processing to keep up with the increasing 

complexity of mobile global communication 

networks. This allows for uplink and downlink to 

be handled independently since the base band 

broadcast signal is accessible on-board thanks to 

demodu lation. The suggested equalizer will be 

used in the down link communication. The 

downlink communication paradigm is shown in 

Figure 2(a). Assuming independence and isotropy, 

the digital signal to be sent is the data stream u + 

jv. Square root raised cosine (SRRC) filters with 

enough band width relative to the signal bandwidth 

are used as the pulse shaping filter just before the 

memoryless nonlinearity of the HPA. As a result, 

nonlinearity-following filters are the sole means 

through which ISI may be introduced [11, 31]. 

Rectangular M-QAM has been chosen as the 

preferred signalling technique. The downlink 

baseband discrete equivalent com medication 

system model is shown in Figure 2(b), where xk is 

the kth transmitted symbol that may take on one of 

M possible values from a source alphabet.  

S (S = {a + jb | a, b = (2m−1− √ M) · d, m = 1, 2, ... 

, √ M} in M-QAM), zk is the 

 

Figure 1: (a) The downlink communication system model and 

(b) its discrete equivalent. 

 

Figure 2: (a) AM/AM and (b) AM/PM conversions 

the same symbol at the nonlinear amplifier's output, 

nk is additive white Gaussian noise that is 

independent of the channel input, yk is the kth 

observation that was received, and x k is the 

symbol that was picked up. Satellites use either 

traveling wave tube amplifiers (TWTA) or solid-

state power amplifiers (SSPA) for their high power 

ampli fiers (HPA).  

(I) TWTA may be thought of as essentially 

memoryless. Like the ones shown in Figure 3, they 

are characterized by an AM/AM conversion and an 

AM/PM conversion. A Saleh model [21] is often 

used to simulate them. 

 Memory is included into SSPA (ii). Common 

approaches to modelling SSPAs with memory use a 

memoryless nonlinearity (for details on the kind of 

nonlinearity, see [32]) followed by a linear IIR 

filter [6]. 

The One-Dimensional Cluster Sequence 

Equalizer 

 Considering a channel model in which the HPA 

component of our system (Figure 2) is removed, we 

will quickly go through the 1D CBSE provided in 

[22], for linear channels. The approach suggested 

in [22] is an MLSE equalizer that avoids the 

channel identification step by taking use of the 

channel's linearity and the symmetries in the source 

constellation to achieve ML performance with less 

effort. In order to estimate the ML input sequence, 

the MLSE equalizer must first calculate an 

estimate, h, of the CIR and then use the VA (or a 

version of it) to do so using distances of the form7 

Dx = |y h Tx|2. Computing the ML convolution 

sums h Tx for each of the ML combinations x of L 

symbols from the alphabet S is time-consuming 

and computationally expensive for each received 

sample. It is the set of values y = h Tx that is 

required in the VA, and not the CIR itself, which is 

the essential principle behind the 1D CBSE 

method; in fact, Dx = |y y |2. In addition, these 

values coincide with the spots (centers) around 

which the noisy observations cluster because of the 

noise, therefore they are the noiseless channel 

outputs. As a result, supervised clustering may be 

used to directly estimate them. The strength of the 

noise determines how far apart the clusters are. The 

number and values of the CIR taps determine both 

the total number of clusters and where those 

clusters lie in the complex plane. Since MLSE 

equalizers need explicit CIR estimation, this means 

that we may avoid this issue by instead estimating 
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the ML centers y of the clusters generated in the 

complex plane. What's more, by taking use of the 

constellation symmetry, direct (from the data) 

estimates for just L carefully selected cluster cen 

ters sufficient to provide the estimates for all ML of 

them. 6 Superscript T signifies transposition.  

 MEMORYLESS NONLINEARITIES 

AND THE USE OF 

CONSTELLATION SYMMETRIES 

 

 Here, we'll discuss how to apply the previously 

discussed equalization technique to situations in 

which a TWTA (as in (3) or (4)) is present. To 

achieve this goal, we must first define how the 

nonlinearity influences the input constellation. 

Symmetries in the constellations  

Rectangular M-ary QAM, the chosen signalling 

technique, may be thought of as a hybrid of digital 

amplitude modulation and digital phase 

modulation. Based on equations (1)–(4), we can 

write down the baseband complex envelope of the 

TWTA output as 

 

where ∼ denotes complex envelope. In words, the 

output of the TWTA is the product of the input 

signal with a factor that depends only on the input 

amplitude. The result is an amplitude change and a 

phase rotation of the input signal constellation 

points. Equation (12) implies that the change is the 

same for all constellation points that share the same 

energy level. The M symbols in the input 

constellation can be grouped in two possible ways 

(see Figure 4(a) for the example of 16-QAM): (1) 

in I circles on the complex plane, where I is the 

number of the energy levels (for the 16-QAM case, 

I = 3), (2) in M/4 squares (four points in each 

square) that are centered on the origin. Observe that 

M/4 points lie in each quadrant of the signal space. 

Since each of these M/4 points is located at the 

corner of one of the M/4 squares, all M points can 

result from such a group of M/4 points via simple 

n·π/2 rotations, 1 ≤ n ≤ 3. After the application of 

the (memoryless) nonlinearity, a new 

 

Figure 3: 16-QAM constellation at the (a) input and (b) output 

of the TWTA. 

Equal-angle pairs of modulus symbols are depicted: 

When = 2 1, the structure of the constellations is 

established. However, the total number of signal 

space points remains unchanged (Figure 4(b)). 

Figure 4 depicts the input (a) and output (b) of the 

TWTA with identically drawn points and energy 

levels. It's easy to observe that the amplifier 

maintains the constellation's symmetry (1, 2). This 

is because, as shown in Figure 5 and the 

supplementary material, the angles between the 

constellation points that share an energy circle do 

not change. As a consequence, the points that are 

produced continue to arrange themselves in squares 

with their centers at the origin, just as they did 

before the nonlinearity was introduced. Each 

square's diagonal length is now 2 g(A), and its 

rotation angle is (A), where A is the amplitude of 

each of the four symbols on the square's corners, 

relative to the corresponding square in the input 

constellation. As a result of the TWTA's 

nonlinearity, it does not change the total number of 

energy levels. Next, we'll demonstrate how the 

CBSE equalizer may make effective use of these 

symmetry relationships to cut down on the number 

of cluster centers that must be predicted directly 

from the training sequence. 

EVALUATION IN CONTEXT OF 

SIMILAR INDICATORS  

Here, we evaluate the proposed equalizer against 

two of the most popular nonlinear equalizers, the 

Volterra series equalizer (26, 36, 37) and the radial 

basis function (RBF) equalizer (38, 39), to see how 

it stacks up. Bit error rates (BER) and computing 

needs are used to evaluate the methods. It is being 

considered to use either a 4-QAM or 16-QAM 

signaling method. We look at a stationary 2-tap (L 

= 2) channel and an AWGN channel (L = 1). The 

late ter was selected to mimic real-world situations 

[5]. The magnitude difference between the first and 

second taps is 8 dB, and the transfer function is 

H(z) = (1 0.5j) + (0.3+0.2j)z1. We use the well 

accepted values for the nonlinearity model 

parameters in (3), (4) [21]: a = 2.1587, a = 1.1517, 

p = 4.0033, and p = 9.104. Both the LTE and the 

Volterra equalizers need 3-dimensional input 
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vectors. Since these equalizers were being utilized 

with minimum-phase channels, the equalization 

delay was disabled. The stated performance 

comparisons are representative of the norm across a 

variety of additional channels.  

Linear transversal equalizer  

 The normalized LMS (NLMS) method [40] was 

employed in a traditional adaptive linear filter for 

the LTE. We have determined the optimal step-

size,, to minimize mean squared error. 

Table 2: Experiment parameters for the LTE 

and Volterra equalizers (zero equalization 

delay). 

 

each particular case. The corresponding values are 

given in Table 2. 

Volterra equalizer  

The output of the Volterra equalizer used in the 

experiments is given by [37] 

 

Thus, the output of the equalizer consists of a 

weighted linear and nonlinear combination of 

channel outputs, with complex weights. Weights qi 

multiply the channel outputs yn directly, and the 

weights qi,j,k multiply third-order products of the 

channel outputs. Only odd-order terms are 

considered, since even-order terms fall out of the 

frequency band of interest [26]. The order of the 

equalizer is restricted to three, because of the 

prohibitive increase in computational complexity as 

well as convergence time that higher-order terms 

would imply. The NLMS algorithm, with different 

step-sizes for the linear and the nonlinear parts 

[11], was used to adapt the Volterra weights. The 

parameters of the algorithm (first-order step-size 

μ1, third-order step-size μ3) have been chosen so as 

to optimize the MSE for each case and are given in 

Table 2. The third-order step-size is related to the 

first-order step-size as μ3 = μ1/ν 

RBF-DF equalizer 

 The performance of the proposed method is also 

compared with that of the symbol-by-symbol 

Bayesian decision feedback (DF) equalizer 

implemented via an RBF network [38, 39, 41]. A 

detailed description of the M-ary RBF-DF 

equalizer, considered here, can be found in [41]. Its 

structure is specified by the decision delay τ, the 

feedforward order nf and the feedback order nb. 

These parameters were chosen in relation to the 

length of the channel, L, as follows [38, 39, 41]: 

 

 

 

Figure 4 shows the BER performance of the 

Volterra equalization for a 16-QAM input to an 

AWGN channel at -6 dB IBO as a function of the 

duration of the training sequence. We have used 

training packets with 60, 100, 1000, and 50,000 

symbols. The results of the LTE (trained with 100 

symbols) and the CBSE and RBF-DF equalizers 

(trained with 60 symbols) are also shown. The 

RBF-DF equalizer's M sub-RBF networks have 

their centers calculated using the recommended 

CBSE algorithm for fair comparison. In addition, 

the RBF networks' weights were determined on the 

basis of the hypothesis that every node's center is 

equally likely. 

Using Simulations for Research  

The transmitted symbols are broken down into 500 

information symbols and the training symbols. The 

CBSE and RBF-DF equally use the same training 

regimen. According to Section 4.3, it is made up of 

20 carefully chosen symbols for each energy range. 

Therefore, the training sequence for 4-QAM (with 

just one energy zone) consists of 20 symbols, 

whereas for 16-QAM (with three energy zones), the 

number of symbols utilized for training is 3 times 

20 = 60. The sample size was chosen to be 

comparable to that utilized in practical systems like 

GSM [42]. Since there is a trade-off between 

computational complexity and performance gain, 
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we used just 100 randomly generated symbols in 

the comparative trials to find the optimal length for 

the training se quince of the Volterra equalizer. 

Using an AWGN channel and 16-QAM signalling 

at 6 dB IBO, Figure 9 provides a detailed 

comparison of the Volterra equalizer's performance 

with 60, 100, 1000, and 50000 training symbols. 

We also utilized 100 randomly generated for the 

LTE. 

Table 3: Real operations required for cluster 

center estimation. 

 

symbols. For each equalizer, the BER is estimated 

once at least 100 symbol errors have been 

committed and at least 50 packets have been 

processed. 

CONCLUSIONS  

For the specific scenario of rectangular QAM 

signalling, a cluster-based sequence equalizer for 

satellite channels has been developed. This method 

significantly outperforms Volterra and NN-based 

approaches while incurring much less of a 

computing burden since TWT memoryless non 

linearities obey the symmetries underlying the 

signalling system. 
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